Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory
Authors: not saved
Abstract:
High Energy Materials is a term that is used for explosives, propellants and pyrotechnics. Explosives are used for military applications. 5-Picrylamino-1,2,3,4-tetrazole(PAT) is an explosive substance. In this study the reactions of the 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, with density functional theory methods were studied. For this purpose, the material on both sides of reaction were geometrically optimized, After that calculation of the thermodynamic parameters were performed on all of them and then The values of ΔH, ΔG, ΔS the reaction at different temperatures for different products determined. Also some parameters including HOMO & LUMO levels, chemical hardness, electrophilicity Index, ΔNmax and chemical potential are investigated. And finally, the best positions and temperatures for the synthesis of explosives nano derivatives and effect of molecular weight and type of nano-cages on chemical properties and stability of PAT and nano derivatives were evaluated.
similar resources
Calculation of Thermodynamic Parameters of [2.4.6] Three Nitro Toluene (TNT) with Nanostructures of Fullerene and Boron Nitride Nano-cages over Different Temperatures, Using Density Functional Theory
In this study explosive substance [2.4.6] three Nitro Toluene (TNT) was attached with nanostructures of fullerene (C24) and boron nitride nano-cages (B12N12). After that using B3LYP (Becke, three-parameter, Lee-Yang-Parr), a method from density functional theory (DFT), thermodynamic parameters of TNT with foregoing nanostructures, in different conditions of temperature, were computed. To this a...
full textA Density Functional Theory Study of Boron Nitride Nano-Ribbons
The electronic and structural properties of pristine and carbon doped (C-doped) boron nitride nano-ribbons(BNNRs) have been studied employing density functional theory (DFT) calculations. Total energies, gapenergies, dipole moments, and quadrupole coupling constants (qcc) have been calculated in the optimizedstructures of the investigated BNNRs. The results indicated that the stability and gap ...
full textThe thermodynamic parameters derived material [1,5-b] tetrazolo [1,2,4] Terry inflorescences (TTA) with boron nitride nano- cages in different conditions of temperature , density functional theory method.
In this study the reaction of the derivative , material [1,5-b] tetrazolo [1,2,4] Terry inflorescences (TTA) with boron nitride nano- cages in different conditions of temperature , density functional theory methods were studied . For this purpose, the material on both sides were geometrically optimized reaction , then the calculation of the thermodynamic parameters were performed on all of th...
full textStudy of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60), in different conditions of temperature, using density functional theory
In this research 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) were attached with different nano structures of fullerene with 20, 24 and 60 carbons producing nano structures with diverse molecular weights. Then by the use of density functional theory methods, thermodynamic parameters of TATB with foregoing nanostructures, in wide of temperature, between 300-400 ºK were computed. To this purpo...
full textStudy of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60), in different conditions of temperature, using density functional theory
In this research 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) were attached with different nano structures of fullerene with 20, 24 and 60 carbons producing nano structures with diverse molecular weights. Then by the use of density functional theory methods, thermodynamic parameters of TATB with foregoing nanostructures, in wide of temperature, between 300-400 ºK were computed. To this purpo...
full textMy Resources
Journal title
volume 5 issue 4
pages 273- 278
publication date 2016-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023